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Outline

e Background
— North American Ensemble Forecast System (NAEFS) and
THORPEX
— Current NCEP/EMC post-processing system
 Statistical Post-Processing Techniques in NAEFS
— Effect of bias-correction
— Impact of combined ensembles (NAEFS)
— Challenge of reforecast for week-2 forecast improvement
— Effect of statistical downscaling
e Further Development of Statistical Post-Processing for NAEFS
— Future configuration of EMC ensemble post-processor



NCEP/EMC Statistical Post-Processing for NAEFS

North American Ensemble Forecast System (NAEFS)
= QOperational multi-center ensemble forecast system, global ensemble forecasts from
NWS and Meteorological Service of Canada (MSC), first established in 2004 at
NCEP
= NCEP operational counterpart to THORPEX/TIGGE
= Positive impact for all participants

Statistical Post-Processing Issues in NAEFS
= GOAL
e Improve reliability while maintaining resolution in NWP forecasts
= Reduce systematic errors (improve reliability) while
= Not increasing random errors (maintaining resolution)
» Retain all useful information in NWP forecast
= APPROACH - Computational efficiency
e Bias Correction : remove lead-time dependent bias on model grid
* Working on coarser model grid allows use of more complex methods
» Feedback on systematic errors to model development
* Downscaling: downscale bias-corrected forecast to finer grid
» Further refinement/complexity added
* No dependence on lead time




Current NCEP/EMC Statistical Post-Processing System

products
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Bias corrected NCEP/CMC GEFS and GFS forecast (up to 180 hrs), same bias
correction algorithm
. Combine bias corrected GFS and NCEP GEFS ensemble forecasts
. Dual resolution ensemble approach for short lead time
. GFS has higher weights at short lead time
NAEFS products
. Combine NCEP/GEFS (20m) and CMC/GEFS (20m), FNMOC ens. will be in soon
. Produce Ensemble mean, spread, mode, 10% 50%(median) and 90% probability
forecast at 1*1 degree resolution

. Climate anomaly (percentile) forecasts also generated for ens. mean

Statistical downscaling
. Use RTMA as reference - NDGD resolution (5km), CONUS only
. Generate mean, mode, 10%, 50%(median) and 90% probability forecasts



Bias Correction Method & Application

= Bias Correction Techniques — array of methods
= Estimate/correct bias moment by moment
e Simple approach, implemented partially
* May be less applicable for extreme cases

= Moment-based method at NCEP: apply adaptive (Kalman Filter type) algorithm

decaying averaging mean error = (1-w) * prior a.m.e + w* (f — a)

For separated cycles, each lead time and individual grid point, a.m.e = averaging mean error
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Skill Scores
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Statistical downscaling for NAEFS forecast

Proxy for truth
— RTMA at 5km resolution
— Variables (surface pressure, 2-m temperature, and 10-meter wind)

Downscaling vector
— Interpolate GDAS analysis to 5km resolution
— Compare difference between interpolated GDAS and RTMA

— Apply decaying weight to accumulate this difference — downscaling
vector

Downscaled forecast
— Interpolate bias corrected 1*1 degree NAEFS to 5km resolution
— Add the downscaling vector to interpolated NAEFS forecast
Application
— Ensemble mean, mode, 10%, 50%(median) and 90% forecasts



NAEFS NDGD Probabilistic 2m Temperature
Forecast Verification For 2007090100 — 2007093000
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Development of Statistical Post-Processing for NAEFS
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Future Confiquration of EMC Ensemble Post-Processor

Calibrated

»  Opportunities for improving the post-processor

— Utilization of additional input information
« More ensemble, high resolution control forecasts (hybrid?)
» Using reforecast information to improve week-2 forecast and precipitation
» Analysis field (such as RTMA and etc..)

— Improving calibration technique
 Calibration of higher moments (especially spread)
» Use of objective weighting in input fields combination
» Processing of additional variables with non-Gaussian distribution

— Improve downscaling methods



Background
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Value-added by including FNMOC ensemble into NAEFS
T2m: Against analysis (NCEP’s evaluation, 1 of 4)
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Value-added by including FNMOC ensemble into NAEFS
T2m: Against analysis (NCEP’s evaluation, 2 of 4)
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Value-added by including FNMOC ensemble into NAEFS
T2m: Against analysis (NCEP’s evaluation, 3 of 4)
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Value-added by including FNMOC ensemble into NAEFS
T2m: Against analysis (NCEP’s evaluation, 4 of 4)
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Proposed Research and Application at NCEP

* Year1

— Implement downscaled NAEFS forecasts for Alaska domain (6-hrly output to
16 days), including additional new near-surface variables (2m min/max &
10m wind speed and direction)

— Implement new NAEFS by adding FNMOC global ensemble with bias
correction (6-hrly output to 16 days)

— Begin experiments using real-time reforecast data

 Year?2

— Implement downscaled forecast for other regions (Hawaii, Guam, and
Puerto Rico)

— Implement new QPF bias correction at 1 by 1 degree resolution 6-hrly output
to 16 days and generate PQPF for various threats (0.1mm, Tmm and etc.)

— Implement statistical downscaling QPF to 5km for CONUS based on bias
corrected QPF forecasts and generate PQPF for various threads

* Year3

— Upgrade downscaled NAEFS forecasts for resolution change and new
variables

— Implement calibrated precipitation forecast with 2nd moment adjustment



* Yea

* Yea

Schedule of Experiments at ESRL

ri

Begin tests on Bayesian processor. Demonstrate basic capabilities for bias
correction and combination of disparate forecasts.

Test pseudo-precipitation as a method for conditioning the QPF variable to be
continuous in space and amenable for use with a Bayesian processor.
r2

Demonstrate agreement between adjustment of ensemble members and
posterior PDF from Bayesian preprocessor.

Develop one or more “weather generators” to add subgrid-scale variance to
coarse-grid forecasts.

Combine pseudo-precipitation and the new EMC/CDC precipitation climatology;
evaluate effectiveness at forecasting extreme events with Bayesian processor.
Engage with MDL to define predictands and post-processing matrix for
comparison (data, lead time, etc).

 Year3

Demonstrate that the downscaled products exhibit the same calibration attributes
as the coarse-grid ensemble.

Demonstrate any value added by real-time re-forecasting relative to the fixed-
model approach now in operations.

Evaluate proposed methods for intercomparisons, jointly with ESRL/PSD, and
pending MDL'’s participation.

Summarize the results and produce couple journal publications.



Proposed Research and Development

Improve bias correction / forecast combination scheme

— Developing and testing statistical post-processing techniques based
on Bayesian principles to address some of the shortcomings of
current NAEFS system

Adjust ensemble forecasts: a simple “frequency matching”-type method

— Point by point, the ordered series of ens. values are moved,
represent the posterior distribution from last step

— Preserve the ranks within the ens., providing useful forecast
covariance information (i.e., joint probabilities, etc)

Improve downscaling methods, generate more variables on NDFD scale
— Real Time Mesoscale Analysis (RTMA) as proxy for truth

— Develop methods to impart variance related to the scales not
resolved by the NWP forecasts

Special emphasis on precipitation, introduce pseudo-precipitation (PP)

— PP equal to precipitation when larger than zero, and proportional to
the moisture deficit with respect to saturation in a column of air

— Explore alternative methods (e.g., Yuan et al. 2007 and Yuan et al.
2008) in case PP-based precipitation processing is not viable



Proposed Research and Development

« Use of reforecast, real time reforecast experiment

— ECMWEF: good results using a strategy of running reforecasts (or hindcasts) in real time
« Same model used for operational forecasting

— EMC: comparison of regime-dependent and climate mean bias correction techniques
« Regime-dependent (with small sample) bias correction works better at short lead times
« Climate-mean method (with much larger sample) works better at long lead times

— Benefit from new high-resolution reforecast dataset developed by NCEP/EMC
» Test post-processing methodology, compare with calibration method at ESRL/PSD

» Intercomparisons and collaborations
— NWS: Unified Ensemble Post-processing System (NUEPS)
« Produce guidance for Weather Information Database (WIDB)

— E\IDCEA_I‘_I)?/DeveIopmental Testbed Center (DTC) and NOAA/ESRL: DTC Ensemble Testbed

. NUEP? and DET program facilitate comparisons/ testing of multiple post-processing
methods

« An alternative dataset to the NAEFS for developing bias correction techniques
— NOAA/ Meteorological Development Lab (MDL)
« Model Output Statistics (MOS) produce site-specific guidance
« Gridded MOS (GMOS) and Ensemble Kernel Density MOS (EKDMOS )
— EKDMOS produce a forecast PDF / cumulative distribution function (CDF)
— NAEFS post-processing focuses on gridded data
« Compare bias correction procedure
— Using the NAEFS system and DET data
— Compare with available algorithms developed at MDL
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Bias Estimation ( Absolute Values )
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CRPSS

Precipitation

Early study (Hamill Et al..):
Comparison of large samples

to small samples
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COMUS 2m Temperature
Averaged From 2007090500 to 2007093000
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RTMA Region 2m Temperature
Averaged From 2007090100 to 2007093000
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